制御性の高いマイコンカー創り

岐阜工業高校 内海 裕憲

これまでの取り組み

■ 大垣工業高校(高校生の部)

1年目 地区大会で何とか完走

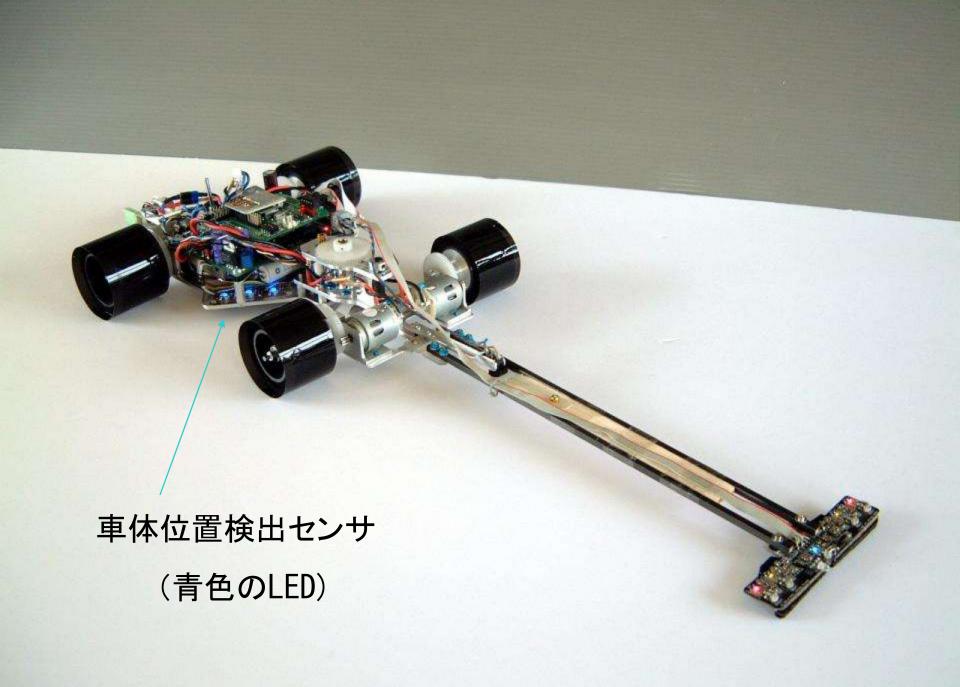
2年目 滑り込みで全国大会出場

3年目 地区大会準優勝

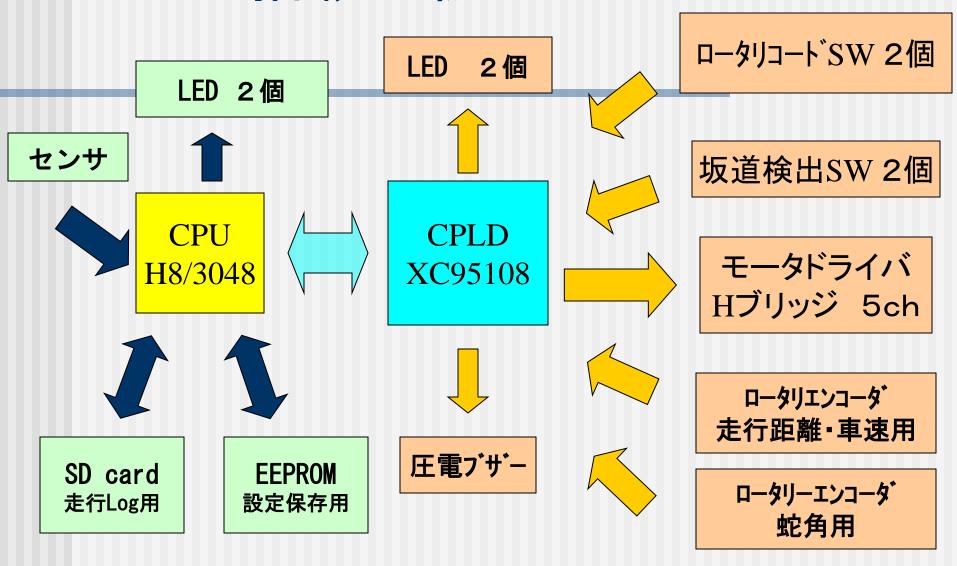
これまでの取り組み

■ 岐阜工業高校(一般の部)

4年目 地区大会初参加で優勝(東海大会)


全国大会2回戦敗退

5年目 地区大会 準優勝(北信越大会)


全国大会 二回戦コースアウト

6年目 地区大会 優勝(横須賀大会)

全国大会 予選コースアウト

CPLD搭載基板

H8/3048 ITU

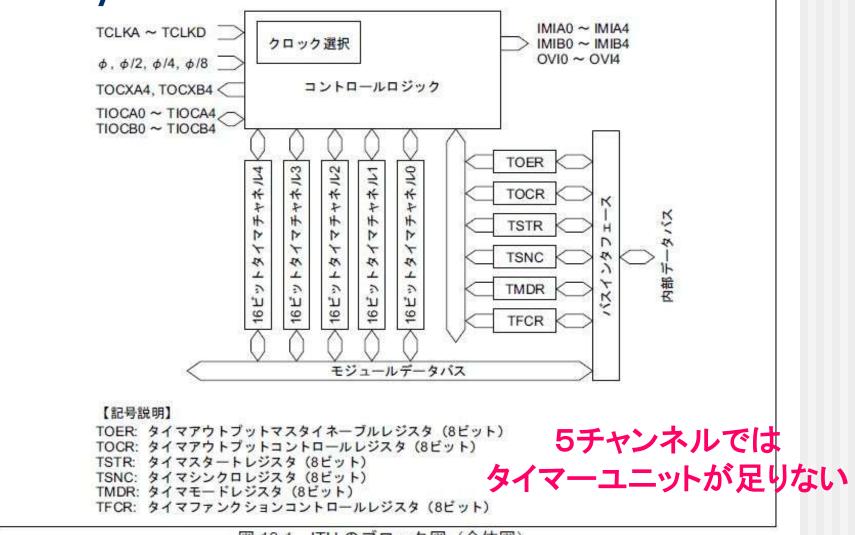


図 10.1 ITU のブロック図 (全体図)

本基板のカウンタ仕様

■ PWM: モータ駆動回路に

5個

■ 蛇角検出用に位相計数カウンタ 1個

■ 走行距離・車速検出用カウンタ 1個

これらを5チャンネルのITUで実現するには?

ITUの使い方を工夫

- チャネル3,4はペアで使うことで3つのPWM を出力できる
 - ・リセット同期PWMモード

•相補PWMモード

相補PWMモード

10.4.6 相補 PWM モード

相補 PWM モードは、チャネル 3、4 を組み合わせることにより、正相と逆相がノンオーバラップの関係にある PWM 波形を 3 相出力します。

相補 PWM モードに設定すると、TIOCA3、TIOCB3、TIOCA4、TOCXA4、TIOCB4、および TOCXB4 端子は自動的に PWM 出力端子となり、TCNT3 と TCNT4 はアップ/ダウンカウンタとして機能します。

使用される PWM 出力端子を表 10.7 に、使用するレジスタの設定を表 10.8 に示します。

チャネル 出力端子 説明 3 TIOCA3 PWM 出力 1 TIOCB3 PWM出力1' (PWM 出力1とノンオーバラップの関係にある逆相波形) 4 TIOCA4 PWM 出力 2 PWM 出力 2' TOCXA4 (PWM 出力2とノンオーバラップの関係にある逆相波形) PWM出力3 TIOCB4

(PWM 出力3とノンオーバラップの関係にある逆相波形)

PWM 出力 3'

TOCXB4

表 10.7 相補 PWM モード時の出力端子

相補PWMモード動作例

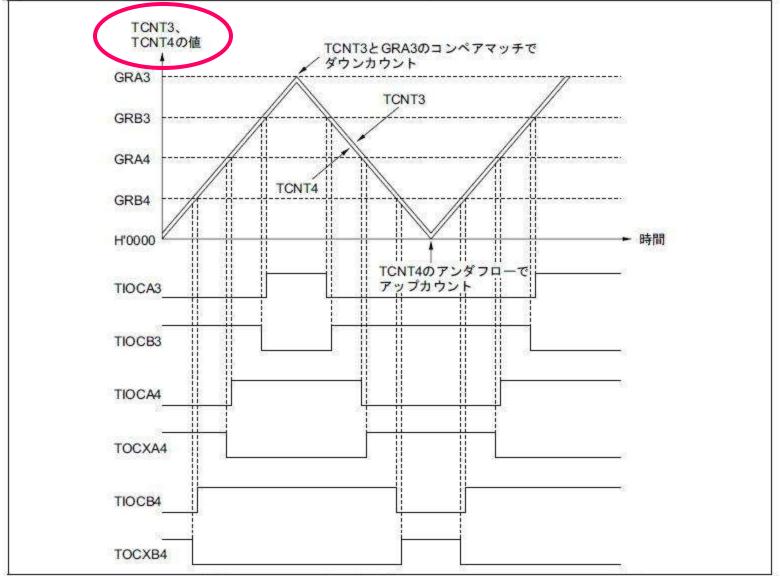


図 10.35 相補 PWM モードの動作例(1) (OLS3=OLS4=1 の場合) ルネサステクノロシ゛ハート・ウェアマニュアルより

リセット同期モードについて

10.4.5 リセット同期 PWM モード

リセット同期 PWM モードは、チャネル 3、4 を組み合わせることにより、一方の波形変化点が共通の関係となる PWM 波形 (正相と逆相) を 3 相出力します。

リセット同期 PWM モードに設定すると、TIOCA3、TIOCB3、TIOCA4、TOCXA4、TIOCB4、および TOCXB4 端子は自動的に PWM 出力端子となり、TCNT3 はアップカウンタとして機能します。 使用される PWM 出力端子を表 10.5 に、使用するレジスタの設定を表 10.6 に示します。

表 10.5 リセット同期 PWM モード時の出力端子

チャネル	出力端子	説 明
3	TIOCA3	PWM 出力 1
	TIOCB3	PWM 出力 1' (PWM 出力 1 の逆相波形)
4	TIOCA4	PWM 出力 2
	TOCXA4	PWM 出力 2' (PWM 出力 2 の逆相波形)
	TIOCB4	PWM 出力 3
	TOCXB4	PWM 出力 3' (PWM 出力 3 の逆相波形)

リセット同期モード動作例

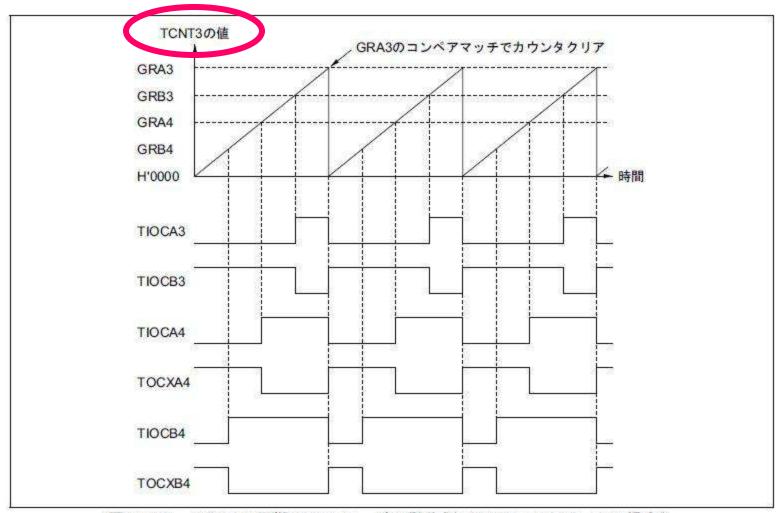
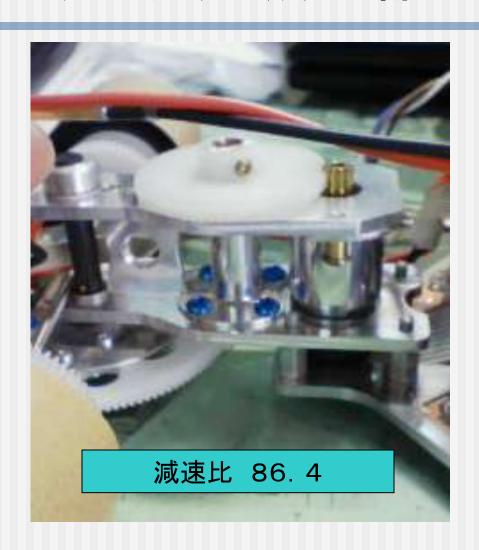


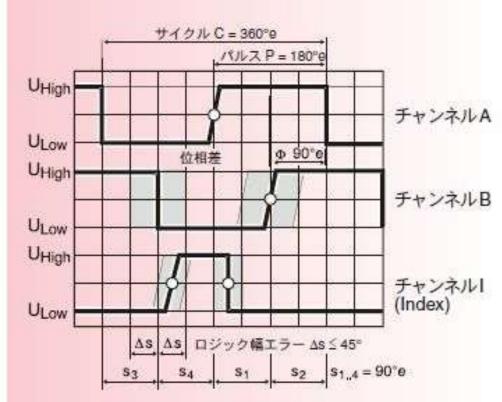
図 10.32 リセット同期 PWM モードの動作例 (OLS3=OLS4=1 の場合)

ITUの割付

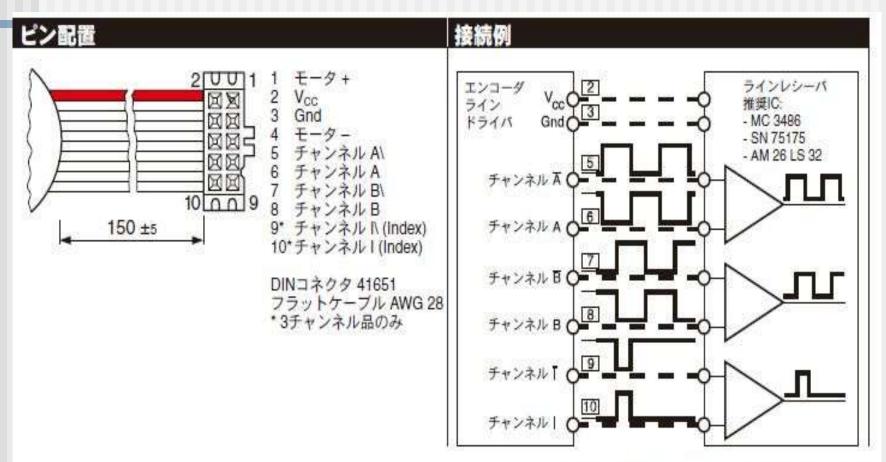

- チャネルO PWMモード モータ駆動用
- チャネル1 PWMモード モータ駆動用
- チャネル2 位相計数モード 蛇角検出
- チャネル3・4 リセット同期モード

割り込み

PWM3本


独立動作CNT4を車速検出用

ステアリング用減速器



蛇角検出用エンコーダ

2/3チャンネル, ラインドライバ (5 mA)

実際のエンコーダからの出力波形

2006年4月版/仕様は変更されることがあります

H8/3048 位相計数動作

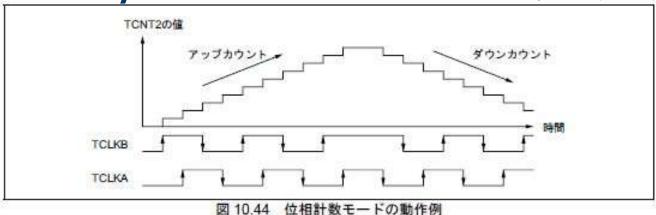
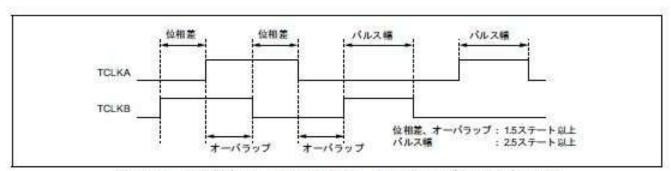
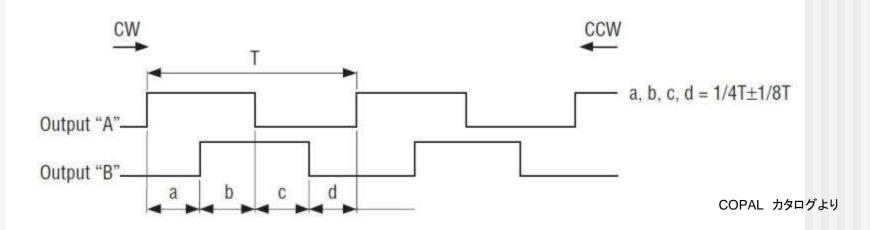
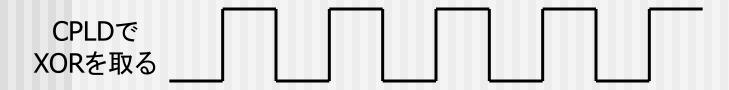


表 10.9 アップ/ダウンカウント条件

カウント方向	- 20	アップ	カウント	ダウンカウント					
TCLKB	1	High	1	Low	High	1	Low	1	
TCLKA	Low	1	High	1	4	Low	1	High	




図 10.45 位相計数モード時の位相差、オーバラップおよびパルス幅


操舵角検出カウンタについて

- 減速比 86.4
- エンコーダの分解能 モータ1回転あたり128パルス
- 位相計数カウンタで4逓倍 モータ1回転あたり512パルス
- ■操舵1度あたり 約122パルス (512 × 86.4 ÷ 360)

走行距離・車速検出エンコーダ

■出力 OUTPUT

FETゲートドライブ回路

■ キットではデジタルトランジスタを使用 安価であるが電流があまり流せない

■制御周期を短くするためにPWM周期も上げたい!!

FETを高速にスイッチングする必要があるが デジタルトランジスタでは容量不足である

ゲートドライバの電流容量

DC CHARACTERISTICS -例- TC4426A

Electrical Specifications: Unless otherwise noted, $T_A = +25$ °C with 4.5V \leq V											
Parameters	Sym	Min	Тур	Max	Units						
Input											
Logic '1', High Input Voltage	V _{IH}	2.4	1	_	V						
Logic '0', Low Input Voltage	V _{IL}	_	1	0.8	٧						
Input Current	I _{IN} -1.0		1	+1.0	μΑ						
Output											
High Output Voltage	V _{OH}	$V_{DD} - 0.025$	1	_	٧						
Low Output Voltage	V _{OL}	_	_	0.025	V						
Output Resistance	R _O	_	7	10	Ω						
Peak Output Current	I _{PK}	_ (1.5) –	Α						

-例- キット使用品

●絶対最大定格(Ta=25°C)

Parameter	Cumbal	Limits							
Parameter	Symbol	DTC114EB	DTC114EM DTC11	4EE	DTC114EUA	DTC114EKA	Unit		
電源電圧	Vcc	50							
入力電圧	VIN	-10~+40							
出力電流	lo	50							
山刀电///	IC(Max.)	100							
許容損失	PD	150 200							
接合部温度	Tj	150							

入力容量の違い

2SJ530(L),

Electrical Characteristics (Ta = 25°C)

Item	Symbol	Min	Тур	Max	Unit	Test Cond	d						
Drain to source breakdown voltage	V _{(BR)DSS}	-60	-	-	٧	I _D = -10m	A						
Gate to southe breakdown voltage	V _{(BR)GSS}	±20	-	1	٧	I _G = ±100µ	ti						
Zero gate voltege drain current	IDSS	-	-	-10	μА	V _{DS} = -60	1						
Gate to source leak current	I _{oss}	-	-	±10	μА	V _{as} = ±16	V						
Gate to source cutoff voltage	V _{GS(off)}	-1.0	-	-2.0	٧	$I_D = -1mA$							
Static drain to source on state	R _{DS(on)}	<u> </u>	0.08	0.10	Ω	I _D = -8A, \	V			SI	28M	14	
resistance	R _{DS(on)}	-	0.11	0.16	Ω	I _D = -8A, \					O .		
Forward transfer admittance	y _{fs}	6.5	11	<u> </u>	S	I _D = -8A, \	er	Symbol	Min.	Тур.	Max.	Unit	T
Input capacitance	Ciss	3 -(850		pF	V _{DS} = -10		Igss	⊆	- 7	±10	μА	t
Output capacitance	Coss	-	420	_	pF	V _{gs} = 0	降伏電圧	V(BR) DSS	-30	28	_	V	1
Reverse transfer capacitance	Crss	_	110	_	pF	f = 1MHz	7777	Ipss	- 55	=2.	-1	μА	Ť
				37	H- L	1 本1 / 唐朝	P CT	Van m.	4.0	4	25	1/	1

(*C)	IDSS	S	32	-	μΑ
ゲートしきい値電圧	Vgs (th)	-1.0		-2.5	V
	W	77	20	28	s
ドレイン・ソース間オン抵抗	Ros (on)	27	25	35	mΩ
		70	30	42	
順伝達アドミタンス	Yfs *	6.0	1 22		S
入力容量	Clss		2600)-	pF
出力容量	Coss	8	450	-	pF
帰還容量	Crss	99	350m		pF
ターンオン遅延時間	ta (an) *	<u>\$2</u>	20		ns

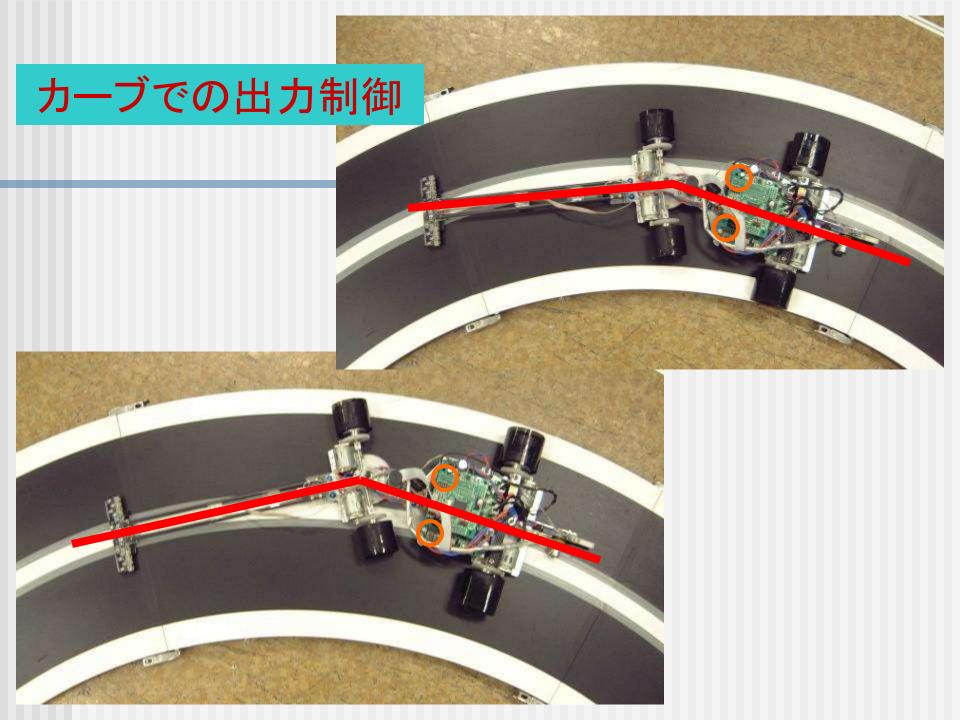
PWM周期を上げるためには

■ 入力容量の小さいFET ON抵抗が大きくなる 電流容量が小さくなる

■ 高速にスイッチングできるゲートドライバ コストがかかるスイッチング信号を工夫しなくてはならない

論理ICで信号を作るには?

- Hブリッジにはデッドタイムが必要 切り替え時に貫通電流が流れるため
- デッドタイム入りの回路を作るには TypeS基板の約2倍必要(らしい)
- 効率よく実現するためには? PLDの活用(CPLD-FPGA)


CPLD使用の利点

- 再合成可能な論理回路の集まり 実装後も何度でも回路を変更できる
- 言語で記述が可能 VHDLで記述
- 配置配線が自由に変更できる マイコンの機能ピンのように考えなくて良い

CPLDをどう使っているか

- デッドタイム生成・制御信号生成 カウンタを作りデッドタイムをカウントしている 変更が自由にできる
- 車速エンコーダの逓倍 分解能を上げる
- 坂検出スイッチのノイズ除去
- ■ブザー用発信回路

車体位置検出はどれくらい有効?

- 速く走らせるためには???
 応答が悪く劇的な効果は望めない
- 走行ラインの確認には大変有効 パラメータを変更したときの結果が確認できる
- ■マーカーの確認が簡単 誤検出をキャンセルできる
- ■制御の幅がでる

速度制御の方法

■ 10[mS]毎に速度を評価すると

■ 4[m/s]→4 [cm]進まないと更新されない!

■あまり短い時間だと誤差が大きくなる

パルスの積算方法を工夫する

■ パルス数を積算するのは10 [mS]

■ 更新するのは1 [mS]

■リングバッファという手法を使う

リングバッファとは?

■ 1[mS]毎のパルス数を記録しておく 10[mS]分積算する

■ 順次10[mS]前のカウントを減じて新しい1 [mS]分のカウントを加算する

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

速いマイコンカーの条件

- 抜けのないソフト
- ■制御が出来るハードウェア
- 精度が高く壊れにくいメカ
- ■経験と蓄積
- ■結局は総合力

ご清聴ありがとうございました

岐阜工業高校 内海 裕憲