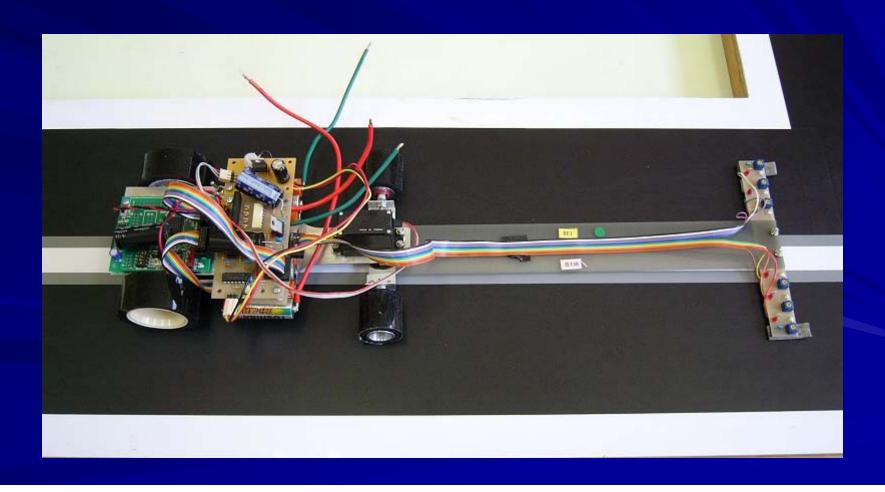
神戸科技高のマイコンカー紹介

2008年5月11日(日) 大阪電気通信大学

神戸市立科学技術高等学校電気情報工学科登弘聡(科学技術研究会)

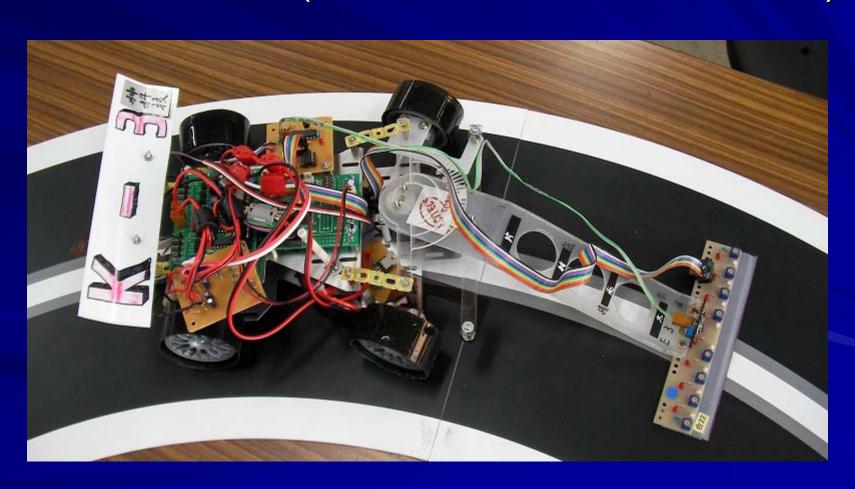
本校について

- ■マイコンカーの取り組み
 - 平成12年度より、工業フェアに出展
 - 近畿地区大会には平成13年より出場
- ■学校の統合(平成16年4月)
 - 3 神戸市立神戸工業高等学校
 - ▲ 神戸市立御影工業高等学校


- 神戸市立科学技術高等学校

過去の成績

大会名	マシン名	記録
2004大会	アリエル	アイデア賞(35位 27"71)
2005大会	POP04	予選で脱輪
2006大会	登	予選で脱輪
2007大会	加太無羅輌他	予選で脱輪
第9回近畿	モモタロウ(23位) Crystia(27位)	決勝進出


JMCR2004のマシン

■アリエル(後輪駆動、小型、低重心)

JMCR2007のマシン

■加太無羅輌他(後輪1輪2モータ駆動、アッカーマン)

マイコンカーの取り組み

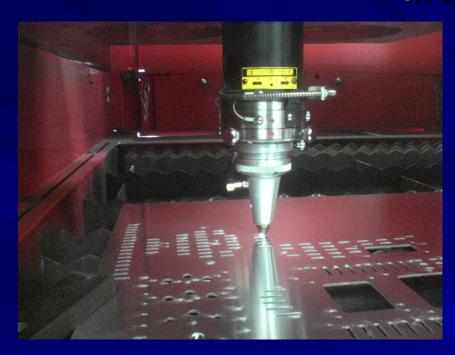
- ■2003年度~2005年度
 - 有志数名をあつめて放課後に取り組んでいた
- ■2006年度
 - 課題研究で取り組んだ
- ■2007年度~
 - 課題研究+科学技術研究会で取り組んでいる

本校マシンの変遷

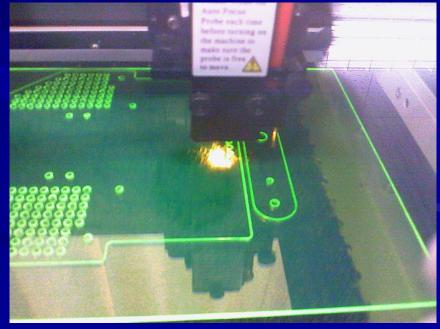
年度	工夫したところ	駆動方式
2003年度	ロボコンマガジンの記事を見てとにかく製作	後輪駆動(1輪1つ) ギヤ比18:1
2004年度	後輪1つに2つのモータ	後輪駆動(11.6:1)
2005年度	ロータリーエンコーダ、搭載	後輪駆動
2006年度	アッカーマンリンクを採用	後輪駆動
2007年度	自作ギヤボックスを使用	後輪駆動(8:1)

マイコンカー製作について

- ■電気情報工学科
 - 電子回路
 - プログラミング技術



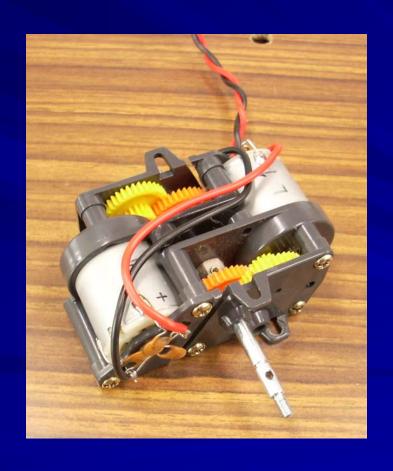
- 車体製作が簡単に出来るように工夫
- プログラムを中心に安定した走行を目指す


車体製作について

- 1. CADを用いて図面を作る
- 2. レーザ加工機でシャーシを切り出す
 - 2007年度まではジュラルミンを使用
 - 2008年度は3mmアクリルを使用
- 3. 特殊な加工は冶具を作って加工する
- 4. 機械工学科と連携してMCによる特殊部品の製作

レーザ加工機による切り出し

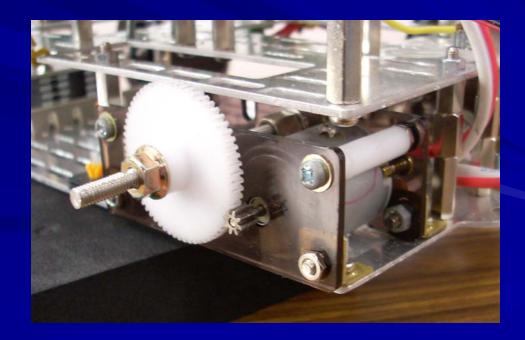
ジュラルミン アマダ AP-100 3mmアクリル コムネット Laser Pro



切り出したシャーシ(アクリル)

ギヤボックス(1)

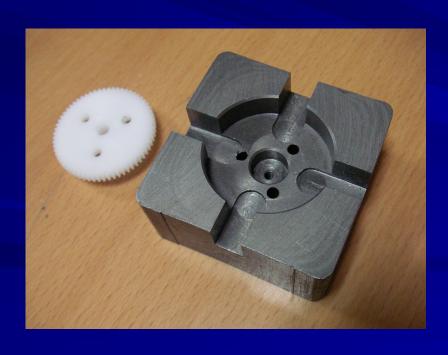
■ タミヤハイスピードギヤボックスで1輪2モータ



ギヤボックス(2)

- ■協育歯車 S50D 64B-0303を使用(8:1)
 - 歯車とシャフトの固定がナットの締め付け
 - タイヤとシャフトの固定はピンと六角ハブ

六角ハブ用の穴(M4ネジに ϕ 2)



各ギヤボックスについて

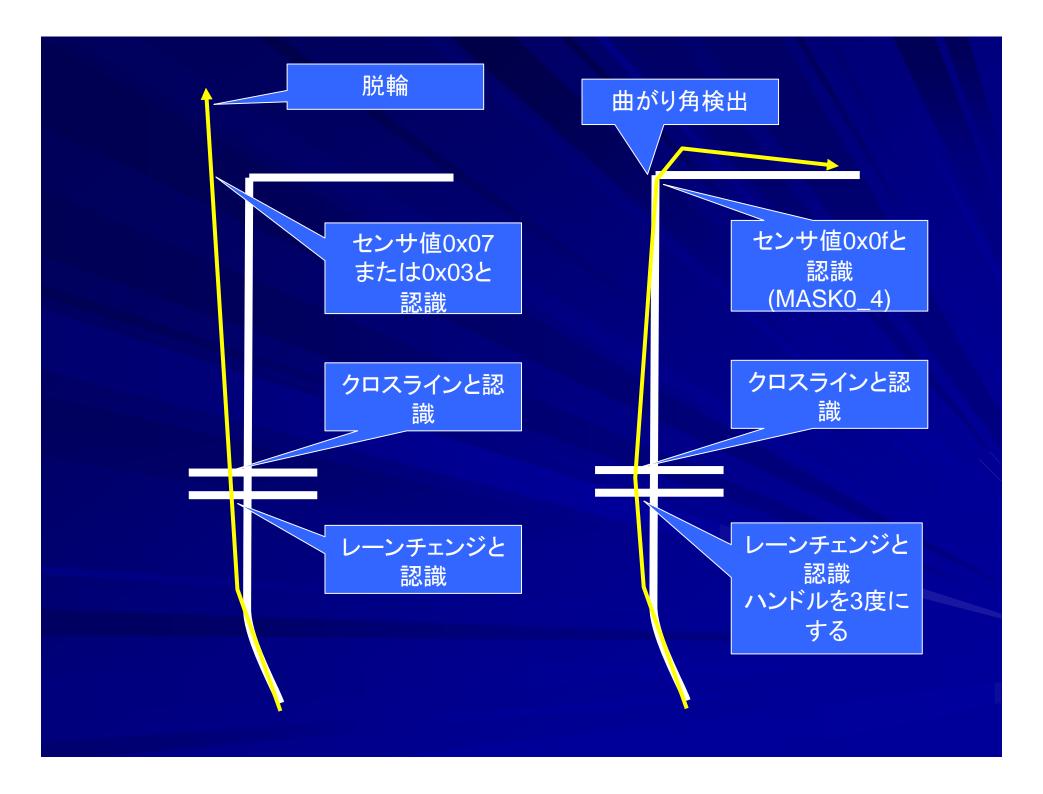
- ■ハイスピードギヤボックスの改造
 - 製作が容易である
 - ギヤ比が限られる
- ■自作ギヤボックス
 - 急加速、急停止でギヤがすべる
 - 六角ハブを固定するための穴をシャフトに開けた ため、折れやすくなった。

自作ギヤボックスの改良(1)

- ■ギヤとホイールを直接固定する
 - ヨコモのラジコンホイールに合う穴を開ける
 - ■冶具にはめ込んで穴を開ける

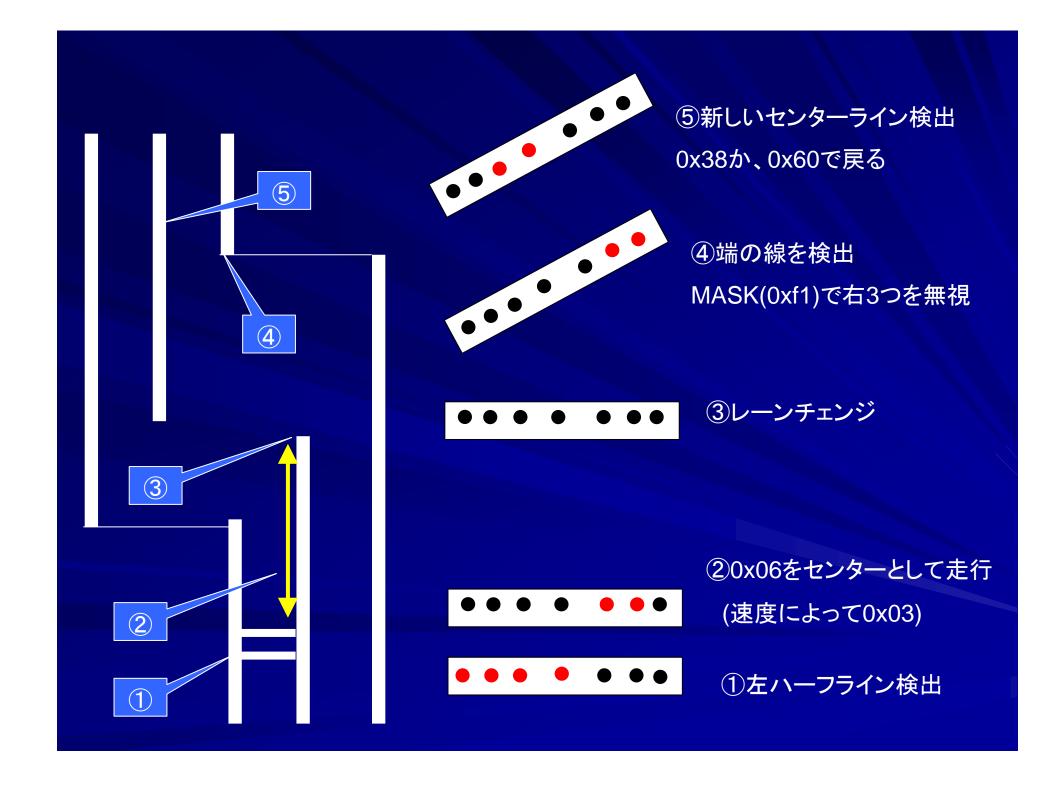
自作ギヤボックスの改良(2)

■ タミヤのラジコンホイールにも合うようにする– 六角ハブ用穴とギヤに開けた穴に合う部品



プログラム面での工夫

- ■クランクを確実に検出させる
 - 大曲げ直後や斜めにクロスラインに入ったとき
 - ■レーンチェンジとして判断してしまう
 - ■高速で進入した場合、ブレーキが間に合わず、曲がり 角を検出できない



- 検出したレーンチェンジの方向にあらかじめハンドルを切ることで解決

プログラム面での工夫2

- ■レーンチェンジをスムーズにする
 - ハーフライン検出後、ラインのあるほうへあらかじめ寄っておく
 - ■少ないハンドル角度でレーンチェンジができる
 - レーンチェンジ終了の際、端の線を読んでしまう
 - ■レーンチェンジと反対のセンサをマスクしておく

マイコンカーに取り組む環境

- パソコン7台(LANで接続)
- ■作業机 6台
- ■工作実習室
- 常設コース(専用部屋)

今後の課題

- ■大会で安定して走行するマイコンカー
- ■JMCR2004大会を頂点に成績が下がっている
 - 一度に取り組む台数が増えた
 - 新しいことに取り組むとき、一度にたくさん始めた ので、それぞれの技術が煮詰まらなかった。
 - 1つのデザイン (設計)のマシンがどこまでの性能 を出せるか調べる

専用コースでの走行

終わり

大阪電気通信大学 自由工房 第1回 オープンセミナー 2008.5.11